Should we build high-speed public WiFi into street lights?

The height of a transmitter on the pole is the key to a powerful signal.
Sign up for the Freethink Weekly newsletter!
A collection of our favorite stories straight to your inbox

While today’s public WiFi may be notoriously slow, tomorrow’s could be fast enough for bandwidth-intensive applications — like gaming, AR, and VR — if we build transmitters into light poles at just the right height.

The challenge: Internet access is hugely important to modern life — we rely on it for jobs, education, news, and entertainment. To ensure locals can get online, many cities are establishing public WiFi networks that are accessible for free or a fee.

Public WiFi can be notoriously slow and unreliable, though, meaning you might be able to check your email using it, but good luck streaming a video or using an AR headset while connected to one of the networks.

“The 60 GHz band can support the bandwidth required by VR, AR, and other emerging bandwidth-intensive applications.”

The Telecom Infra Project

The spectrum: The Telecom Infra Project (TIP) — a telecom innovation group that includes Meta, Microsoft, and the National Institute of Standards and Technology (NIST) — has an idea to make public WiFi more useful.

Instead of broadcasting signals over the standard 2.4 GHz and 5 GHz frequency bands, it wants to utilize the 60 GHz band to distribute public WiFi from devices attached to light poles. 

“This large slice of unlicensed spectrum can support the bandwidth required by virtual reality, augmented reality, 4K video streaming, smart city sensors, and other emerging bandwidth-intensive applications,” the group wrote in 2017.

Looking up: A problem with using the 60 GHz band for public WiFi is that the signals tend to scatter off surfaces and cover less distance than signals in other bands, but TIP may be able to minimize these downsides by being deliberate with the types of transmitters it uses and where it places them.

NIST researchers have now developed and verified a model for determining the ideal transmitter type and height based on the frequency band being utilized.

“By using our model, someone like a cell provider can account for various advantages and disadvantages of 60 GHz access points and signals on light poles.”

Derek Caudill

Public WiFi utilizing standard frequency bands works best when omnidirectional transmitters are placed 4 meters above the ground, but networks distributing WiFi over the 60 GHz band should use highly directional transmitters fixed 6 or 9 meters up, they write in their paper.

“This work shows that by using our model, someone like a cell provider can account for various advantages and disadvantages of 60 GHz access points and signals on light poles in urban environments,” said NIST researcher ​​Derek Caudill.

The digital divide: While the use of the 60 GHz band for urban public WiFi networks could allow people living in them to take advantage of bandwidth-intensive apps, in many rural areas and developing nations, people are still waiting for any type of internet access.

TIP is working on projects to get them connected, too, and we’ve seen other groups explore the use of airships, satellite constellations, cable-winding robots, and more to bridge the digital divide and get all the world’s citizens online.

We’d love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [email protected].

Sign up for the Freethink Weekly newsletter!
A collection of our favorite stories straight to your inbox
Related
Google’s $1 billion bet on Africa’s digital future
Just 37% of sub-Saharan Africans use the internet today, but Google predicts the next 10 years will be the region’s “digital decade.”
AI skeptic Gary Marcus on AI’s moral and technical shortcomings
From hallucinations to regulatory battles, Gary Marcus argues the AI status quo has failed us and it’s time citizens demand something more.
Why the USSR and China fell behind the US in the Chip Cold War
The US is currently winning the “chip war” with China, but to stay ahead, experts say it needs to start manufacturing microchips stateside.
Silicon chips are no longer sustainable. Here’s what’s next.
To take our tech to the next level, we need a more energy-efficient semiconductor. Gallium nitride could be it.
Is this the biggest industrial espionage campaign in history?
The cat-and-mouse game between China and the world’s semiconductor companies is already having enormous consequences.
Up Next
career certificate
Subscribe to Freethink for more great stories